Estimating Barley Biomass with Crop Surface Models from Oblique RGB Imagery

نویسندگان

  • Sebastian Brocks
  • Georg Bareth
چکیده

Abstract: Non-destructive monitoring of crop development is of key interest for agronomy and crop breeding. Crop Surface Models (CSMs) representing the absolute height of the plant canopy are a tool for this. In this study, fresh and dry barley biomass per plot are estimated from CSM-derived plot-wise plant heights. The CSMs are generated in a semi-automated manner using Structure-from-Motion (SfM)/Multi-View-Stereo (MVS) software from oblique stereo RGB images. The images were acquired automatedly from consumer grade smart cameras mounted at an elevated position on a lifting hoist. Fresh and dry biomass were measured destructively at four dates each in 2014 and 2015. We used exponential and simple linear regression based on different calibration/validation splits. Coefficients of determination R2 between 0.55 and 0.79 and root mean square errors (RMSE) between 97 and 234 g/m2 are reached for the validation of predicted vs. observed dry biomass, while Willmott’s refined index of model performance dr ranges between 0.59 and 0.77. For fresh biomass, R2 values between 0.34 and 0.61 are reached, with root mean square errors (RMSEs) between 312 and 785 g/m2 and dr between 0.39 and 0.66. We therefore established the possibility of using this novel low-cost system to estimate barley dry biomass over time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimating Biomass of Barley Using Crop Surface Models (CSMs) Derived from UAV-Based RGB Imaging

Crop monitoring is important in precision agriculture. Estimating above-ground biomass helps to monitor crop vitality and to predict yield. In this study, we estimated fresh and dry biomass on a summer barley test site with 18 cultivars and two nitrogen (N)-treatments using the plant height (PH) from crop surface models (CSMs). The superhigh resolution, multi-temporal (1 cm/pixel) CSMs were der...

متن کامل

Unmanned aerial vehicles for pre-harvest biomass estimation in willow (Salix spp.) coppice plantations

Bioenergy crops provide a form of renewable energy, contributing to reductions in greenhouse gas emissions. Short rotation coppice (SRC) bioenergy crops, including willow (Salix spp.) and poplar (Populus spp.) are planted commercially in the UK and more widely across Europe for use in heat and power generation [1] often on set-aside or arable agricultural land. However, available data on yield ...

متن کامل

Monitoring Agronomic Parameters of Winter Wheat Crops with Low-Cost UAV Imagery

Monitoring the dynamics in wheat crops requires near-term observations with high spatial resolution due to the complex factors influencing wheat growth variability. We studied the prospects for monitoring the biophysical parameters and nitrogen status in wheat crops with low-cost imagery acquired from unmanned aerial vehicles (UAV) over an 11 ha field. Flight missions were conducted at approxim...

متن کامل

Determine the most suitable Allometric equations for Estimating Above-ground Biomass of the Juniperus excelsa

  Today, modeling and determination of allometric equations of forest trees, especially Junipers trees, are very important for determination of biological status and carbon storage capacity of forest species. The aim of this study was to determine the most suitable allometric equations for estimating the biomass of leaf, sub branch, main branch, trunk, and biomass of total Juniperus excelsa tr...

متن کامل

Combined Spectral and Spatial Modeling of Corn Yield Based on Aerial Images and Crop Surface Models Acquired with an Unmanned Aircraft System

Precision Farming (PF) management strategies are commonly based on estimations of within-field yield potential, often derived from remotely-sensed products, e.g., Vegetation Index (VI) maps. These well-established means, however, lack important information, like crop height. Combinations of VI-maps and detailed 3D Crop Surface Models (CSMs) enable advanced methods for crop yield prediction. Thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2018